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A simulation method to obtain stochastic models of bimolecular reactions of the type A + B—> P 
o r A + B ^ P + Q and an autocatalytic reaction of the type A—> P, A + P—> 2P is proposed. 
This method is used to study fluctuations in the composition of a system with a reversible bimole-
cular reaction close to equilibrium and to calculate the mean number and variance of the number 
of product particles in the case of an autocatalytic reaction. 

According to the stochastic theory1 '2, a chemical reaction represents a sequence of 
reaction events (conversions of the individual particles of the starting substances to 
products and vice versa), for which the elementary infinitesimal probabilities can 
be postulated. Based on the probability model, the reaction course can be simulated 
on a digital computer.We showed in previous communications3 '4 how the course 
of simple first-order reactions can be simulated and we used the simulation method 
to study the fluctuations of the system's composition close to equilibrium. Now we 
shall show how the simulation method can be formulated for higher-order reactions, 
namely an irreversible bimolecular reaction, A + B P, an autocatalytic reaction, 
A P, A + P 2 P, and a reversible bimolecular reaction, A + B P + Q. 

Reaction Model 

We shall consider a closed system of unit volume, in which one of the envisaged 
reactions proceeds at constant temperature {i.e., the system is in contact with a large 
heat reservoir of a constant temperature). The number of particles X = A, B, P, 
or Q at a time t is denoted as Nx(t). At the beginning, t — 0, the system contains 
only particles of the starting substances, i.e.,NA( 0) = N°A,NB( 0) = = N^ = 0; 
for the sake of simplicity NA = = N. The state of the system is characterized by 
the number of particles P, NP(t). The probability that in the system, which is at a time 
t in the state NP(t) = j, an arbitrary particle or a pair of particles of the starting 
substances is changed into products in the interval (t, t + At), At 0, is according 
to the postulate of the stochastic theory1 '2 equal to ri At; the probability that in the 
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same interval an arbitrary particle or a pair of particles of the products is changed 
into the starting substances is r j At. Further it follows from the postulates of the 
theory that r} = k(N - j)2, r j = 0 for the reaction A + B -> P, r} = (N - j) . 
. [ky + k2j), r j = 0 for the reaction A -> P, A + P -> 2 P, and r} = k3(N - j)2, 
r j = k j 2 for A + B P + Q. According to the assumptions of the theory, the 
constants k, ku k2, k3 and k4 are independent of time. 

Simulation of Reactions 

The system, which passed into a state j at a time t, passes at a time t + x-} into some 
neighbouring state (in the case of an irreversible reaction into a state j + 1, in the 
case of a reversible reaction into j + I or j — 1). The quantity Tj? which can be 
interpreted as the life time of the state j, represents a random variable that can attain 
any value in the interval (0, oo). It follows from the postulated probabilities of the 
elementary conversions that 

Prob { t ^ Tj < r + dr} = (r} + rj) exp f — (rd + rj) t ] d r . ( l ) 

We assign to the quantity Tj a new random variable X j by the relation 

X j = 1 — exp [— (r j + rj) t J . (2) 

It is obvious that (0, 1) and that 

Prob {x ^ Xj < x + dx} = Prob {t ^ x} < t + dr} = dx , (3) 

where x = 1 — exp [ — (rj + rj) r ] . The quantity X} has therefore in the interval 
(0, l ) a unit probability density and represents a random number. Random (more 
precisely, pseudorandom) numbers can be generated on a digital computer by means 
of a previously described algorithm3 . 

In the case of an irreversible bimolecular or autocatalytic reaction, the reaction 
course can be simulated with the use of generated random numbers as follows: 
We generate in turn numbers X0, Xx, X2, . . a n d from the relation 

^ = - I n (1 - Xj)/rj , j = 0, 1, 2, , . . . , N , (4) 

obtain the life times of the states NP(t) = 0, 1, 2, . . . , N. The time in which the j-th 
j 

particle P is formed is equal to ]T Tj. In this way we obtain an overall picture of the 
i = 0 

reaction course. 
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In the case of a reversible bimolecular reaction, generating of a single random 
number for one reaction event enables to determine only the life time of a given state 
but not the state into which the system shall pass. The probability that the system 
which is in a state j passes by a subsequent reaction event into a state j + 1 is 

Pi>] + 1 = k3(N - j)2l[k3(N - j)2 + k j 2 ] , (5) 

and the probability that it passes into a state j — 1 is 

Pi.j-I = 1 - - K f U H N - j y + k 4 j 2 ] . (6) 

We therefore generate for every reaction event a second random number Yj e (0, l). 
If Yj < Pj.j+i, the passage j -*• j + 1 occurs; if Y3 > Pj,j + i, the passage j j — 1 
occurs. By generating in turn pairs of random numbers X}, Fj, the reaction course in 
the time scale can be simulated. 

Similarly as in the case of a reversible unimolecular reaction4, it is possible to study 
by the simulation method fluctuations in the system's composition close to the 
equilibrium of the reaction A + B P + Q. In this case it is sufficient to follow 
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FIG. 1 

Mean Number of Reaction Events between 
Returns into State N/2 for a System with 
Reaction A + B P + Q 

1 N= 100; 2 N= 1000. 

FIG. 2 

Variance of the Number of Particles P for 
Autocatalytic Reaction 

j - D2{Np(t)}, x= <NP(t)}/N, N — 50, 
ky = 0 01 s \ k2 = 0-004 s 1 . Solid line 
corresponds to Eq. (8), points to simulated 
data. 
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the fluctuations in the number of reaction events scale (for the mathematical descrip-
tion of the probability model of this reaction in the number of events scale see5). 
For the sake of simplicity, we set /c3 = k4 and assume N even. Since we follow the 
reaction in the scale of reaction events, it is sufficient to generate for every event 
a single random number, Yj, which determines the type of the transition from a state j. 
If we choose as the starting state NA(0) = NB(0) = NP(0) = NQ(0) = N/2 (i.e., 
a state corresponding to the deterministic equilibrium), it is possible to follow the 
number of reaction events between returns into the state N/2. The mean number of 
events between returns into this state derived from the theory5 is 

0N/2 ~ K ^ ) l / 2 " (7) 

A simulation gives the dependence of the ratio of the number of events, m, to the 
number of returns into the state Nj2, n, on the number of returns. Such a simulation 
was performed for N = 100 (/u50 « 8-85) and N = 1000 (/n500 « 28). The ratio 
m/n approaches with increasing n the theoretical value f.iN/2 as shown in Fig. 1. 

The proposed simulation method was used by us to study autocatalytic reactions 
of the type A P, A + P - > 2 P , for which a formula for the variance of the number 

TABLE I 

Mean Degrees of Conversion of Substance A (TV = 50, ky = 0-01 s " 1 ) 

* d e t 0 - 1 0 - 2 0 - 3 0 - 4 0 - 5 0 - 6 0 - 7 0 - 8 0 - 9 

k? = 0 0 0 4 s " 1 0 - 0 9 9 0 - 1 9 5 0 - 2 8 7 0 - 3 7 6 0 - 4 6 2 0 - 5 5 4 0 - 6 4 6 0 - 7 4 5 0 - 8 5 0 

-Xsim) k2 = 0 0 2 0 s " 1 0 - 0 9 0 0 - 1 6 4 0 - 2 2 9 0 - 2 9 2 0 - 3 5 2 0 - 4 1 8 0 - 4 8 9 0 - 5 6 5 0 - 6 6 6 

TABLE I I 

Mean Degrees of Conversion of Substance A and Variances of the Number of Particles P (TV = 20, 
k1 = 0-01 s " 1 , k2 = 0-004 s " 1 ) 

•*det 0 - 1 0 - 2 0 - 3 0 - 4 0 - 5 0 - 6 0 - 7 0 - 8 0 - 9 
a 

-^stoch 0 - 0 9 7 8 0 - 1 9 2 0 - 2 8 2 0 - 3 7 1 0 - 4 5 9 0 - 5 4 9 0 - 6 4 2 0 - 7 4 1 0 - 8 5 3 

0 - 0 9 8 1 0 - 1 9 2 0 - 2 8 0 0 - 3 6 9 0 - 4 5 5 0 - 5 4 3 0 - 6 3 5 0 - 7 2 9 0 - 8 2 9 

^s 2 toch W 2 - 9 5 6 - 8 1 1 0 - 6 1 3 - 6 1 5 - 6 1 6 - 3 1 5 - 4 1 2 - 6 7 - 3 9 

^ s i m W 3 - 0 9 6 - 8 7 1 0 - 5 1 3 - 2 1 5 - 2 1 5 - 8 1 4 - 2 1 1 - 6 6 - 5 9 

° Index stoch denotes exact stochastic values calculated from the known distribution6 of the 
number of particles P at a time t. 
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of particles P, D2{NP(t)}, was derived earlier6 by an approximate method. The mean 
value and variance of the number of particles P were calculated as mean values from 
1000 simulations (i.e., idealized experiments). Fig. 2 shows the variance of the number 
of particles P thus determined together with values calculated from the approximate 
formula6 

D2{NP(t)} = (NP(t)y + {k.jk,) <NP{t)>2 , (8) 

where <iVP(f)> means stochastic mean number of particles P, for N = 50, = 0-01 s - 1 

and k2 = 0-004 s _ 1 ( k 1 j k 2 = 2-5). By comparison it follows that Eq. (8) gives results 
close to the simulated values only for a low degree of conversion x = <iVP(?)>/iV. 
The variance is a maximum for x « 0-6. 

Simulated mean values of the degree of conversion xs im, at a time t corresponding 
to the given deterministic degree of conversion, xd e t ( = iVpet/iV, where JV£et denotes 
deterministic number of particles P at a time t), are given in Table I. The values 
of xs im are considerably lower than xde t . However, a comparison of the simulated mean 
values and variances with exact stochastic values for N = 50 was not possible (for 
difficulties in numerical calculations), therefore we carried out another 1000 simu-
lations for N = 20. In this case it is possible to obtain the first and second moments 
directly by a numerical calculation from the distribution of the number of particles P 
at a time t, which was derived previously6. The results are given in Table II. The 
simulated and exact mean values of the degree of conversion are practically identical 
(maximum deviation 3%). Larger differences are in the variances (maximum deviation 
10%). It can be therefore expected that for N = 50 the values of x s im obtained from 
1000 simulations would be also close to the exact stochastic mean values. 
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